

DPP - 5 (Thermodynamics) Video Solution on Website:https://physicsaholics.com/home/courseDetails/60 Video Solution on YouTube:https://youtu.be/CeDk07-SCXI Written Solution on Website:https://physicsaholics.com/note/notesDetalis/78 Q 1. Sixty per cent of given sample of oxygen gas when raised to a high temperature dissociates into atoms. Ratio of its initial heat capacity (at constant volume) to the final heat capacity (at constant volume) will be: (b) $\frac{25}{\frac{26}{25}}$ (d) $\frac{25}{27}$ (a) $\frac{8}{7}$ $(c)\frac{10}{7}$ Q 2. P-V diagram of a diatomic gas is a straight line passing through origin. The molar heat capacity of the gas in the process will be: (b) 2.5R (a) 4R (d) $\frac{4R}{2}$ (c) 3 R The figure shows two paths for the change of state of a gas from A to B. The ratio of Q 3. molar heat capacities in path 1 and path 2 is: (a) >1(b) < 1(c) 1 (d) data insufficient

Q 4. The molar heat capacity in a process of a diatomic gas if it does a work of $\frac{Q}{4}$ when a heat of Q is supplied to it is :

(a) $\frac{2}{5}$ R	(b) $\frac{5}{2}$ R
$(c)\frac{10}{3}R$	$(d) \frac{\overline{6}}{7} R$

Q 5. Ideal monoatomic gas is taken through a process dQ = 2dU. The molar heat capacity for the process is: (where dQ is heat supplied and dU is change in internal energy)
(a) 5 R
(b) 3 R
(c) R
(d) None

Q 6. n moles of a monoatomic gas undergo a cyclic process ABCDA as shown in figure. Process AD is isobaric, BC is adiabatic, CD is isochoric and DA is isothermal. The maximum and minimum temperature in the cycle are $4T_0$ and T_0 respectively. Then:

(a)
$$C = 4R$$

(b) $C = 0$
(c) $C = 2R$
(b) $C = 0$
(c) $C = R$

Q 9. A mixture of ideal gasses N_2 and He are taken in the mass ratio of 14 : 1 respectively. Molar heat capacity of the mixture at constant pressure is.

(a)
$$\frac{19R}{6}$$
 (B) $\frac{6R}{19}$
(C) $\frac{13R}{6}$ (D) $\frac{6R}{13}$

- Q 10. The molar heat capacity for an ideal gas
 - (a) cannot be negative
 - (b) must be equal to either C_V or C_p
 - (c) must lie in the range $C_V \le C \le C_p$
 - (d) may be zero

Q 11.

STATEMENT-1: The specific heat of a monatomic gas has value between 0 and ∞ . **because**

STATEMENT-2: $c_P = \frac{5}{2}R$ and $c_V = \frac{3}{2}R$ for a monoatomic gas.

× × ×	PLUS India's Be Interaction Structure Live Test Personal Study Pla	ICONIC est Educat ve Live Cla ed Courses s & Quizze Coach	*i ors sses & PDFs s		
24 months No cost EMI		₹:	2,333/n ₹56,0	no 00	>
18 months No cost EMI		₹	2,625/n ₹47,2	no 50	>
12 months No cost EMI		₹	3,208/n ₹38,5	no 00	>
6 months No cost EMI		₹	4,667/n ₹28,0	no 00	>
To be paid as a one-time payment View all plans					
Add a re	eferral cod	e		A	PPLY

PHYSICSLVE

Use code PHYSICSLIVE to get 10% OFF on Unacademy PLUS.

	PLUS				
S	India's Best Educators				
S	Interactive Live Classes				
8	Structured Courses & PDFs				
\otimes	Live Tests & Quizzes				
	Personal Coach				
	Study Plo	inner			
24 months		₹2.100/mo			
No cost EMI		+10% OFF ₹50,400	>		
18 months		₹2.363/mo			
No cost EMI		+10% OFF ₹42,525	>		
12 months		₹2 888/mo			
No cost EMI		+10% OFF ₹34,650	>		
(markle		F4 200 /			
6 months		₹4,200/mo	>		
NO COST EMI		+10% OFF \$25,200			
To be paid as a one-time payment					
View all plans					
Awesome! PHYSICSLIVE code applied X					

Written Solution

DPP- 5 Thermodynamics- Molar heat capacity By Physicsaholics Team

1) Initial
$$(v = \frac{1}{2}R = \frac{5}{2}R$$

Let there are n molex of Organ
At hightamperature
no of moles of $0_2 = -4n$, no of mules of $0 = 12n$
 $C_V = \frac{n_1C_V + n_2C_{V_2}}{n_1 + n_2} = \frac{4n(\frac{5}{2}R) + 12n(\frac{3}{2}R)}{-4n + 12n} = \frac{28nR}{1.4n}$
 $C_V = \frac{5RXn}{2X7R} = \frac{10}{7}$
Ans(c)

 $W = \frac{\alpha}{4}$ - 8/ $\Rightarrow \Delta U = 40 - W = 0$ 39 AS \Rightarrow ANS(C)

 $\frac{d\theta}{dt} = 2 dU$ $\frac{d\theta}{dt} = 2 \times \frac{f}{2} \times$ 5) C = fR = 3RANS-B

AB 18 180 baric with increasing volume

$$\Rightarrow T_{6} > T_{A}$$

$$DA 18 180 thermal \Rightarrow T_{D} = T_{A}$$

$$CD 18 180 thermal \Rightarrow T_{D} = T_{A}$$

$$\Rightarrow T_{c} > T_{D}$$

$$BC 18 adiabatic with decreasing volume
$$\Rightarrow T_{8} > T_{3}$$

$$T_{8} = 4T_{6}$$

$$T_{8} = 4T_{7}$$

$$T_{8} = 4T_{7}$$$$

b

8)
$$W_{gag} = dU$$

 $\Rightarrow \quad \Delta \Theta = W_{gag} + dU = 2 dU$
 $\Rightarrow \quad n \in \Delta T = 2 \times n \notin \Delta T$
 $\Rightarrow \quad C = 2 + 2 = 2R$
 $7 - 1 = \frac{2R}{19} + 0$
 $R = 4R$
 $R = 4R$

In Polytoobic process PVS = c 0 $-\frac{R}{c}$ (= 5-5 for (adrabatic process)

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/60

Video Solution on YouTube:-

https://youtu.be/CeDk07-SCXI

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/78

